
The Selfish ObjectThe Selfish Object

kevlin@curbralan.comkevlin@curbralan.com
Kevlin HenneyKevlin Henney



ACCU Conference 2008ACCU Conference 2008 22

AgendaAgenda

•• IntentIntent
Present a design style that addresses dependencies Present a design style that addresses dependencies 
in a cohesive, open and manageable fashionin a cohesive, open and manageable fashion

•• ContentContent
Key conceptKey concept
Dependencies and Dependencies and pluggabilitypluggability
Control and flowControl and flow
PartitioningPartitioning
SummarySummary



ACCU Conference 2008ACCU Conference 2008 33

Key ConceptKey Concept

•• IntentIntent
Describe the essence and implications of the selfish Describe the essence and implications of the selfish 
object style of designobject style of design

•• ContentContent
Selfish objectsSelfish objects
Architectural consequencesArchitectural consequences
Common versus selfish approachesCommon versus selfish approaches



ACCU Conference 2008ACCU Conference 2008 44

Selfish ObjectsSelfish Objects

•• Instead of focusing on what an object can use Instead of focusing on what an object can use 
or even be given, focus on what it wantsor even be given, focus on what it wants

In essence, express external dependencies by In essence, express external dependencies by 
defining specific, narrow, plugdefining specific, narrow, plug--inin--style interfacesstyle interfaces

•• This style is in contrast to common approach of This style is in contrast to common approach of 
abstracting interfaces from implementationsabstracting interfaces from implementations

Although better than not abstracting interfaces at Although better than not abstracting interfaces at 
all, such an approach often ends up presenting a all, such an approach often ends up presenting a 
broad and unfocused façade rather than a specific broad and unfocused façade rather than a specific 
and focused usage interfaceand focused usage interface



ACCU Conference 2008ACCU Conference 2008 55

Architectural ConsequencesArchitectural Consequences

•• In the large, object selfIn the large, object self--centredness leads to a centredness leads to a 
highly localised, open and testable architecturehighly localised, open and testable architecture

Consistent parameterization from above, across Consistent parameterization from above, across 
packages and layers as well as objects, results in a packages and layers as well as objects, results in a 
more inverted layering, keeping the core domain more inverted layering, keeping the core domain 
model separated from the plumbingmodel separated from the plumbing

•• Locality and loose coupling are important Locality and loose coupling are important 
considerations in architectureconsiderations in architecture

Respecting them can simplify comprehensibility, Respecting them can simplify comprehensibility, 
extensibility, changeability, testability, etc.extensibility, changeability, testability, etc.



ACCU Conference 2008ACCU Conference 2008 66

Common versus Selfish ApproachesCommon versus Selfish Approaches

Boundary

Core

Boundary

Core

The common approach to layering can The common approach to layering can 
result in the core concepts of an result in the core concepts of an 
application depending, ultimately, on application depending, ultimately, on 
the I/O (streams, UI, database, etc.).the I/O (streams, UI, database, etc.).

The selfish approach makes the core The selfish approach makes the core 
concepts dictate what they need from concepts dictate what they need from 
other parts of the system.other parts of the system.



ACCU Conference 2008ACCU Conference 2008 77

Dependencies and Dependencies and PluggabilityPluggability

•• IntentIntent
Introduce dependency management techniques that Introduce dependency management techniques that 
promote loose coupling and promote loose coupling and pluggabilitypluggability

•• ContentContent
Dependency managementDependency management
Singletons and other Singletons and other globalsglobals
Parameterize from AboveParameterize from Above
Dependency InversionDependency Inversion
Inversion LayerInversion Layer



ACCU Conference 2008ACCU Conference 2008 88

Dependency Management ProblemsDependency Management Problems

•• You have a dependency management problem You have a dependency management problem 
if you find that...if you find that...

You cannot unit test your application's core without You cannot unit test your application's core without 
connecting to a database or touching external connecting to a database or touching external configconfig
A single class hierarchy dominates your code and A single class hierarchy dominates your code and 
becomes the focus (and pit) for all changesbecomes the focus (and pit) for all changes
You have Singletons all over your code, ostensibly You have Singletons all over your code, ostensibly 
introduced for expediency and to simplify codeintroduced for expediency and to simplify code
You have cycles between packages or headers, or You have cycles between packages or headers, or 
you are unsure what a cyclic dependency isyou are unsure what a cyclic dependency is



ACCU Conference 2008ACCU Conference 2008 99

Dependency ManagementDependency Management

•• The The dependency horizondependency horizon should be kept closeshould be kept close
A component's total dependency set is formed by A component's total dependency set is formed by 
following the dependencies from the component following the dependencies from the component 
until they either run out or hit the 'system' librariesuntil they either run out or hit the 'system' libraries
This limit or boundary is the dependency horizonThis limit or boundary is the dependency horizon

•• Interfaces, formal or otherwise, often play a Interfaces, formal or otherwise, often play a 
key role in loosening a system's couplingkey role in loosening a system's coupling

Interfaces may be expressed using a variety of Interfaces may be expressed using a variety of 
mechanisms, depending on the technologymechanisms, depending on the technology



ACCU Conference 2008ACCU Conference 2008 1010

Singletons and Other Singletons and Other GlobalsGlobals

•• Singleton is a common source of dependencySingleton is a common source of dependency--
related problemsrelated problems

It is normally used by coincidence, it introduces a It is normally used by coincidence, it introduces a 
centralised point of coupling, it complicates testing, centralised point of coupling, it complicates testing, 
and it comes with various lifecycleand it comes with various lifecycle--related problemsrelated problems

•• Consider avoiding modifiable Consider avoiding modifiable staticstatic data data ——
and even reducing use of immutable and even reducing use of immutable staticstatic datadata

This moratorium on This moratorium on staticstatic includes the includes the MonostateMonostate
pattern, which is also known as the Borg pattern... pattern, which is also known as the Borg pattern... 
which tells you everything you need to knowwhich tells you everything you need to know



ACCU Conference 2008ACCU Conference 2008 1111

Hardwired versus PluggableHardwired versus Pluggable

•• PluggabilityPluggability describes a design property that is describes a design property that is 
the opposite of the opposite of hardwiredhardwired

Hardwiring attempts to nail an assumption in place, Hardwiring attempts to nail an assumption in place, 
which is a problem if the assumption represents a which is a problem if the assumption represents a 
variable or critical dependencyvariable or critical dependency

•• Pluggable designs are more testable and Pluggable designs are more testable and 
adaptable than hardwired designsadaptable than hardwired designs

They also emphasise locality in a design by more They also emphasise locality in a design by more 
explicitly dividing concerns between the pluggable explicitly dividing concerns between the pluggable 
and the kernel elements of a designand the kernel elements of a design



ACCU Conference 2008ACCU Conference 2008 1212

Parameterize from AboveParameterize from Above

•• Pass in Pass in configconfig parameters rather than having parameters rather than having 
them global (e.g., Singleton) or pulled inthem global (e.g., Singleton) or pulled in

Communicate through constructor arguments, Communicate through constructor arguments, 
method arguments or generic parameters, as method arguments or generic parameters, as 
appropriateappropriate
Decentralise configuration constantsDecentralise configuration constants

•• Callout interfaces define the configurable Callout interfaces define the configurable 
dependencies of each partdependencies of each part

E.g., the Context Object, PlugE.g., the Context Object, Plug--In and Strategy In and Strategy 
design patterns or the Test Double testing patterndesign patterns or the Test Double testing pattern



ACCU Conference 2008ACCU Conference 2008 1313

Inversion of DependenciesInversion of Dependencies

•• Dependency Inversion is a technique for Dependency Inversion is a technique for 
rearranging (reversing) dependencies in coderearranging (reversing) dependencies in code

Normally based on introducing an interface of some Normally based on introducing an interface of some 
kind that plays the role of a plugkind that plays the role of a plug--in pointin point
Inverting dependencies can be used to break cyclic Inverting dependencies can be used to break cyclic 
dependencies between packages by containing the dependencies between packages by containing the 
cycle within a packagecycle within a package
Inversion of dependencies often leads to inversion Inversion of dependencies often leads to inversion 
of control, i.e., plugof control, i.e., plug--ins lead to ins lead to callbackscallbacks and the and the 
dependency horizon becomes an event horizondependency horizon becomes an event horizon



ACCU Conference 2008ACCU Conference 2008 1414

Dependency Inversion in PracticeDependency Inversion in Practice

Dependency Inversion allows a Dependency Inversion allows a 
design's dependencies to be reversed, design's dependencies to be reversed, 
loosened and manipulated at will.loosened and manipulated at will.



ACCU Conference 2008ACCU Conference 2008 1515

Transitive DependenciesTransitive Dependencies

•• Some partitions appear encapsulated, but Some partitions appear encapsulated, but 
hidden dependencies still create couplinghidden dependencies still create coupling

Traditional layering partitions and groups Traditional layering partitions and groups 
immediate concerns well enough, but it does not immediate concerns well enough, but it does not 
fully separate them fully separate them —— the transitive dependencies the transitive dependencies 
can make for a distant dependency horizoncan make for a distant dependency horizon

DatabaseCoreUI



ACCU Conference 2008ACCU Conference 2008 1616

Inverted LayeringInverted Layering

•• It is possible to invert dependencies in classic It is possible to invert dependencies in classic 
layered architectureslayered architectures

An Inversion Layer introduces a separation An Inversion Layer introduces a separation 
between concepts and mechanismsbetween concepts and mechanisms
Simplifies testing and parallel developmentSimplifies testing and parallel development

DatabaseCoreUI



ACCU Conference 2008ACCU Conference 2008 1717

Inversion LayersInversion Layers

•• In practice, an Inversion Layer is often also an In practice, an Inversion Layer is often also an 
adaptation or bridging layeradaptation or bridging layer

The core owns the interfaces ('The core owns the interfaces ('outerfacesouterfaces') it uses') it uses
The boundary code wraps and encapsulates The boundary code wraps and encapsulates 
external dependenciesexternal dependencies
The code in between, which bridges boundary and The code in between, which bridges boundary and 
core, is normally based on adaptorscore, is normally based on adaptors

•• Amount of executable code is often conservedAmount of executable code is often conserved
It is the partitioning of the code that has changedIt is the partitioning of the code that has changed



ACCU Conference 2008ACCU Conference 2008 1818

Control and FlowControl and Flow

•• IntentIntent
Focus on control flow model and location of active Focus on control flow model and location of active 
control in a designcontrol in a design

•• ContentContent
Inversion of controlInversion of control
Dependency InjectionDependency Injection
CallbackCallback mechanismsmechanisms
MicroMicro--KernelKernel
InterceptorInterceptor



ACCU Conference 2008ACCU Conference 2008 1919

Inversion of ControlInversion of Control

•• A description of the control flow relationship A description of the control flow relationship 
between one component and anotherbetween one component and another

A lowerA lower--level component calls out to a higherlevel component calls out to a higher--level level 
component, rather than the highercomponent, rather than the higher--level component level component 
calling the lowercalling the lower--level onelevel one
Often a result of dependency inversionOften a result of dependency inversion

•• Inversion of control is based on the Hollywood Inversion of control is based on the Hollywood 
principle: "Don't call us, we'll call you"principle: "Don't call us, we'll call you"

Common in framework designs that use a push Common in framework designs that use a push 
rather than a pull approach to event handlingrather than a pull approach to event handling



ACCU Conference 2008ACCU Conference 2008 2020

Applications of Inversion of ControlApplications of Inversion of Control

•• Inversion of control makes for a more eventInversion of control makes for a more event--
driven programming styledriven programming style

Aligns control flow with event flowAligns control flow with event flow
Aligns event horizon with dependency horizonAligns event horizon with dependency horizon

•• It is found in many common patternsIt is found in many common patterns
Observer propagates event notificationObserver propagates event notification
Enumeration Method is used for iterationEnumeration Method is used for iteration
Lifecycle Lifecycle CallbackCallback maps lifecycle events to maps lifecycle events to callbackscallbacks
Visitor complements class hierarchy behaviourVisitor complements class hierarchy behaviour



ACCU Conference 2008ACCU Conference 2008 2121

Dependency InjectionDependency Injection

•• Principle of separating configuration from use Principle of separating configuration from use 
and injecting the configuration dependenciesand injecting the configuration dependencies

Used in lightweight component container modelsUsed in lightweight component container models
Although it uses inversion of control, Dependency Although it uses inversion of control, Dependency 
Injection it is not a synonym Injection it is not a synonym —— inversion of control inversion of control 
is a broader concept, and the key to Dependency is a broader concept, and the key to Dependency 
Injection is the inversion of dependenciesInjection is the inversion of dependencies
An assembler role is responsible for configuring An assembler role is responsible for configuring 
objects, whether through constructor arguments or objects, whether through constructor arguments or 
'injecting' methods'injecting' methods



ACCU Conference 2008ACCU Conference 2008 2222

CallbackCallback MechanismsMechanisms

•• CallbackCallback mechanisms depend on the language mechanisms depend on the language 
and the desired and the desired 

A method selector, such as a delegate or function A method selector, such as a delegate or function 
pointer, allows plugging in of a single methodpointer, allows plugging in of a single method
Interfaces Interfaces —— as in the as in the interfaceinterface construct construct —— supports supports 
a broader interface in statically typed languagesa broader interface in statically typed languages
A dynamically typed protocol may be a more A dynamically typed protocol may be a more 
normal approach for a language, or it may be normal approach for a language, or it may be 
possible through reflectionpossible through reflection
Templates and other generic forms are also usableTemplates and other generic forms are also usable



ACCU Conference 2008ACCU Conference 2008 2323

MicroMicro-- (and (and NanoNano--) Kernels) Kernels

•• A MicroA Micro--Kernel approach partitions control Kernel approach partitions control 
logic, not just conceptslogic, not just concepts

Common logic and concepts are extracted into the Common logic and concepts are extracted into the 
kernel (or engine) and details are relocated within kernel (or engine) and details are relocated within 
plugplug--insins
A A NanoNano--Kernel is a more minimal and localised Kernel is a more minimal and localised 
application of the same ideaapplication of the same idea

•• The kernel works in terms of outThe kernel works in terms of out--bound bound 
callbackcallback interfaces on pluginterfaces on plug--insins

The domain model itself may well be a plugThe domain model itself may well be a plug--inin



ACCU Conference 2008ACCU Conference 2008 2424

Anatomy of a PlugAnatomy of a Plug--In ArchitectureIn Architecture

Kernel

Observers and 
Interceptors

Exception 
Handling

Feature 
Realisation

Execution
Policies

Application



ACCU Conference 2008ACCU Conference 2008 2525

InterceptionInterception

•• How can a design be cleanly extended to How can a design be cleanly extended to 
accommodate extraaccommodate extra--functional features?functional features?

Modifications of behaviour, such as filtering, or Modifications of behaviour, such as filtering, or 
addition of features, such as loggingaddition of features, such as logging

•• Favour an InterceptorFavour an Interceptor--based approach rather based approach rather 
than an adaptation approachthan an adaptation approach

An Interceptor is more configurable and less An Interceptor is more configurable and less 
intrusive than many other approaches, such as intrusive than many other approaches, such as 
Template Method (or NVI), that are hardwiredTemplate Method (or NVI), that are hardwired



ACCU Conference 2008ACCU Conference 2008 2626

InterceptorInterceptor

•• An object, component or framework's basic An object, component or framework's basic 
behaviour can be extendedbehaviour can be extended

Interception plugInterception plug--ins are called on certain actionsins are called on certain actions

Kernel
registerPlugIn
operation

Interceptor
beforeOperation
afterOperation

*

Interceptor1 Interceptor2

beforeOperation
afterOperation

beforeOperation
afterOperation

Configurer

Client



ACCU Conference 2008ACCU Conference 2008 2727

PartitioningPartitioning

•• IntentIntent
Describe effective approaches for broader Describe effective approaches for broader 
partitioning of a system's classes and componentspartitioning of a system's classes and components

•• ContentContent
Interface separation, role partitioningInterface separation, role partitioning
RoleRole--based namingbased naming
Partitioning by rolePartitioning by role
Partitioning for stabilityPartitioning for stability



ACCU Conference 2008ACCU Conference 2008 2828

Interface Separation, Role PartitioningInterface Separation, Role Partitioning

•• One of the most common forms of partitioning One of the most common forms of partitioning 
is separating interface from implementationis separating interface from implementation

"Program to an interface, not an implementation""Program to an interface, not an implementation"
•• Focus on object roles not object classesFocus on object roles not object classes

A role defines a selfish perspective: how an object is A role defines a selfish perspective: how an object is 
to be used, not what it is or how it is madeto be used, not what it is or how it is made
RoleRole--based design tends to give a cleaner separation based design tends to give a cleaner separation 
of concerns and more focused interfacesof concerns and more focused interfaces
ClassClass--centric design tends to give coarsercentric design tends to give coarser--grained, grained, 
implementationimplementation--focused classesfocused classes



ACCU Conference 2008ACCU Conference 2008 2929

RoleRole--Based NamingBased Naming

•• When extracting interfaces, focus on the usage When extracting interfaces, focus on the usage 
and not on the implementationand not on the implementation

Otherwise the interface is likely to be broader than Otherwise the interface is likely to be broader than 
necessary, and with an implementationnecessary, and with an implementation-- based based 
name (a common problem with name (a common problem with II--prefixing)prefixing)

Name based on 
implementation

Implementation 
name

Client Name based on 
client usage

Implementation 
name

Client

ImplementationImplementation--
based naming based naming 
(and thinking)(and thinking)

RoleRole--based based 
namingnaming



ACCU Conference 2008ACCU Conference 2008 3030

Partitioning by RolePartitioning by Role

•• Role partitioning applies more broadly than Role partitioning applies more broadly than 
just interface separation and segregationjust interface separation and segregation

Although this is perhaps one of the most visible Although this is perhaps one of the most visible 
applications of role partitioningapplications of role partitioning

•• Packages can be organised with respect to rolePackages can be organised with respect to role
Packages should be cohesive with respect to usage Packages should be cohesive with respect to usage 
and purposeand purpose
Packages should not be partitioned with respect to Packages should not be partitioned with respect to 
coincidental criteria, such all classes in a package coincidental criteria, such all classes in a package 
being exceptions or value objectsbeing exceptions or value objects



ACCU Conference 2008ACCU Conference 2008 3131

Partitioning for StabilityPartitioning for Stability

•• Different parts of a system are subject to Different parts of a system are subject to 
different rates of development changedifferent rates of development change

Layering should respect such change, so that less Layering should respect such change, so that less 
stable elements depend on more stable elements, stable elements depend on more stable elements, 
and not vice versaand not vice versa
Stability can be tracked over a code base's lifetime, Stability can be tracked over a code base's lifetime, 
and the code can refactored accordinglyand the code can refactored accordingly
Dependency Inversion is a useful technique for Dependency Inversion is a useful technique for 
rearranging dependencies along the lines of rearranging dependencies along the lines of 
stability, such as introducing Inversion Layersstability, such as introducing Inversion Layers



ACCU Conference 2008ACCU Conference 2008 3232

SummarySummary

•• A selfish object approach separates and A selfish object approach separates and 
localises concepts and dependencieslocalises concepts and dependencies

Simplifies modification, extension, and incremental Simplifies modification, extension, and incremental 
development and testingdevelopment and testing

•• In the large, the approach leads to inversion In the large, the approach leads to inversion 
layers and an architecture with high localitylayers and an architecture with high locality

An onionAn onion--layered view centred on the domain layered view centred on the domain 
model, rather than a stackmodel, rather than a stack--layered view, is often a layered view, is often a 
more appropriate visualisationmore appropriate visualisation


